Proteases and protein instability – finally happening!

Elda Lerm
Technical Consultant
Anchor Yeast

INDUSTRY WORKSHOP
6 May 2015

Anchor Yeast
THE LEADING NEW WORLD WINE YEAST BRAND
AT FIRST I WAS LIKE

BUT THEN I WAS LIKE
Enological enzymes:
- used at several stages in processing: grape/must/wine
- complex cocktails of several enzymes
- varied concentration and activity; primary and secondary
- supplement/complement endogenous enzymes
 - effective
 - specific
 - convenient

Keep in mind:
Protein stability in wine

Protein Stability = ability of a protein to retain its structural conformation or its activity when subjected to physical/chemical manipulations
Protein sources in wine:
- synthesis during berry development 50%
- yeast protein synthesis during fermentation
- yeast autolysis

Protein levels in wine influenced by:
- more mature grapes
- extended lees contact
- skin contact
- warmer growing regions
- mechanical harvesting
- lower crop levels
Protein haze = visual defect / no flavour impact unacceptable to consumers

<table>
<thead>
<tr>
<th>Problematic</th>
<th>Less problematic</th>
</tr>
</thead>
<tbody>
<tr>
<td>white wines</td>
<td>red wines*</td>
</tr>
<tr>
<td>lower phenol red varietals</td>
<td>wines fermented/stored in barrels</td>
</tr>
<tr>
<td>stainless steel fermented wines</td>
<td>*phenolic compounds react with proteins during fermentation</td>
</tr>
</tbody>
</table>

Cause of protein haze = grape pathogenesis-related (PR) proteins
- infection/damage
- 10 – 500 mg/L
Challenges of PR proteins:

Differences in:
- molecular weights
- unfolding temp’s
- structures
- stability
(greatly impacted by other grape components)
Cause of protein haze = grape pathogenesis-related (PR) proteins

1. thaumatin-like proteins (TLP)
2. chitinases
3. invertases
4. β-glucanases

↓

1. denaturation/unfold
2. aggregate
3. flocculate

↓

visible haziness

- unstable over time (storage conditions)
- (wine matrix composition)
- slow process; normal storage
Cause of protein haze = grape pathogenesis-related (PR) proteins

1. thaumatin-like proteins (TLP)
2. chitinases
3. invertases
4. β-glucanases

↓

1. denaturation/unfold
2. aggregate
3. flocculate

↓

light-dispersing particles and visible haziness

reversible unfolding less likely to aggregate over short time periods
Cause of protein haze = grape pathogenesis-related (PR) proteins

1. thaumatin-like proteins (TLP)
2. chitinases
3. invertases
4. β-glucanases

\[\text{unfold irreversibly} \quad \text{aggregate more aggressively} \]

\[\downarrow \]

1. denaturation/unfold
2. aggregate
3. flocculate

\[\downarrow \]

light-dispersing particles and visible haziness
Cause of protein haze = grape pathogenesis-related (PR) proteins

1. thaumatin-like proteins (TLP)
2. chitinases
3. invertases
4. β-glucanases

↓

1. denaturation/unfold
2. aggregate
3. flocculate

↓

visible haziness
Cause of protein haze = grape pathogenesis-related (PR) proteins

1. thaumatin-like proteins (TLP)
2. chitinases
3. invertases
4. β-glucanases

↓

1. denaturation/unfold
2. aggregate
3. flocculate

↓

light-dispersing particles and visible haziness

native to non-native state:
 a) pH
 b) temp
 c) salt
 d) co-solutes
 e) preservatives
 f) intrinsic protein properties
pH:

low pH \rightarrow smooth and homogenous haze
high pH \rightarrow coarse and flocculated haze

Salt and co-solutes:

- sulphate anions \rightarrow denaturation + aggregation
- organic acids (-) \rightarrow prevents proteins (+) form sulphate interaction
- polysaccharides \rightarrow inhibit aggregation
- \rightarrow stabilising effect on haze potential of proteins

During fermentation:

- \uparrow soluble proteins
- \uparrow protein instability
- Δ proportion of protein fractions

After fermentation:

- protein stability increases (stabilizing yeast polysaccharides)
1. Measure protein stability/haze potential

↓

2. Adjust protein content before bottling

↓

3. No haze formation during transport/storage

INDUCE haze

MEASURE haze

Protein stable – no treatment

Protein unstable – treatment

Protein stability evaluation = just before bottling

acidification/MLF/fortification/cold stab: precipitation of protein complexes
INDUCE haze

MEASURE haze

stable – no treatment

unstable – treatment

- **Heat test**

- **Bentotest**

- unreliable
- colour
- difficult
- observer variance

Removal of proteins:
- adsorption (Bentonite)
- precipitation

all proteins false unstable
Bentonite

- ✓ effective
- × efficiency
- × cost
- × impact on environment: waste disposal
- × impact on wine characteristics: quality
- × protein removal not selective
- × increased tank time

Na
- more reactive
- very fluffy lees
- higher % wine loss

Ca
- more compact lees
- lower % wine loss
- less effective, so use more

Wine pH:
- Bentonite: −
- Protein: +
Amount of bentonite required:

- **variety**
- **region**
- **vinification**

Best time to fine and remove largest portion of proteins = juice

- no loss of aromatic quality
- reduced amount of proteins for removal later
- less bentonite
- wine less altered by stabilisation process
Protease

- hydrolases
- cleavage of peptide bonds (links between amino acids) in proteins
- synthesis and degrading properties

= food / diary / detergent / leather industries etc.

Preparation, Properties and Possible Application of Coimmobilized Biocatalysts

W. Hartmeier

Summary

Recently, coimmobilizes have been developed which combine the biocatalytic properties of whole cells or parts of the cells and additional enzymes. The new method presented leads to very small immobilized particles with extraordinarily high specific activities and negligible diffusion barriers. Enzymatic properties
Endogenous proteases associated with grape and wine:

- Amino acids
- Autolysis
- Rot
pepsin

chief digestive enzyme

proteins → polypeptides

trypsin

digestive enzyme

bromelain

anti-inflammatory

ficin

proteins → amino acids

papain
Challenges of PR proteins:

- molecular weights
- unfolding temp’s
- structures
- stability

(greatly impacted by other grape components)
Right now?

- proteases not allowed for use in winemaking
- resolution for their approval in certain conditions
- “not approved for 2 more years”
- more applications for proteases will be investigated
Materials Authorized for Treatment of Wine and Juice

<table>
<thead>
<tr>
<th>Materials and use</th>
<th>Reference or limitation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Protease (general)*</td>
<td>Aspergillus niger</td>
</tr>
<tr>
<td></td>
<td>Bacillus subtilisper</td>
</tr>
<tr>
<td></td>
<td>Bacillus licheniformis</td>
</tr>
<tr>
<td>Protease (Bromelain)*</td>
<td>Ananus comosus</td>
</tr>
<tr>
<td></td>
<td>Ananus bracteatus</td>
</tr>
<tr>
<td>Protease (Ficin)*</td>
<td>Ficus spp.</td>
</tr>
<tr>
<td>Protease (Papain)*</td>
<td>Carica papaya</td>
</tr>
<tr>
<td>Protease (Pepsin)*</td>
<td>Porcine or bovine stomachs</td>
</tr>
<tr>
<td>Protease (Trypsin)*</td>
<td>Porcine or bovine pancreas</td>
</tr>
</tbody>
</table>

* To reduce or to remove heat labile proteins
Proctase
- Aspergillopepsins I and II
- food grade
- well characterised
- active at wine pH and unfolding temp of PR proteins

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Reduction in protein</th>
</tr>
</thead>
<tbody>
<tr>
<td>+ Proctase</td>
<td>20%</td>
</tr>
<tr>
<td>+ 1 min @ 75°C</td>
<td>40%</td>
</tr>
<tr>
<td>+ Proctase + 1 min @ 75°C</td>
<td>85-91%</td>
</tr>
</tbody>
</table>

→ NO BENTONITE NEEDED

- **heat treatment** 1 min @ 75°C
- unfolding
- protein most susceptible to attack
- aggregation
- Proctase 15 mg/L
- juice treatment = no negative sensory impact
Costing implications

Figure 3. Results of economic analysis of heating plus Proctase addition, compared with batch and in-line bentonite addition for Sauvignon Blanc, Chardonnay and Riesling juices (treatment cost in cents per L).
A promising enzyme for the stabilisation of white wines
New alternative to bentonite

Beyond bentonite
By Ella Robinson, Neil Scrimgeour, Matteo Marangon, Richard Muhlack, Paul Smith, Peter Godden and Dan Johnson
The Australian Wine Research Institute, PO Box 197, Glen Osmond, SA 5064.

Until now, bentonite treatment has been the winemaker’s best answer to troublesome haze-causing proteins. Breakthroughs in understanding the structure and properties of those proteins at the AWRI have led to the discovery of a potentially viable and practical alternative. Laboratory, pilot and industry-scale trials of proctase have now been successfully completed.

Proctase as a bentonite alternative – what’s the latest?
AWRI researchers have discovered information about the mechanisms of wine protein haze formation and have identified Proctase – with its ability to break down haze-forming grape proteins – as a potential alternative to bentonite.
working with OIV to gain approval for protease treated wines

A promising enzyme for the stabilisation of white wines
New alternative to bentonite

Beyond bentonite

By Ella Robinson, Neil Scrimgeour, Matteo Marangon, Richard Muhlack, Paul Smith, Peter Godden and Dan Johnson
The Australian Wine Research Institute, PO Box 197, Glen Osmond, SA 5064.

Until now, bentonite treatment has been the winemaker’s best answer to troublesome haze-causing proteins. Breakthroughs in understanding the structure and properties of those proteins at the AWRI have led to the discovery of a potentially viable and practical alternative. Laboratory, pilot and industry-scale trials of Proctase have now been successfully completed.

Proctase as a bentonite alternative – what’s the latest?

AWRI researchers have discovered information about the mechanisms of wine protein haze formation and have identified Proctase – with its ability to break down haze-forming grape proteins – as a potential alternative to bentonite.
NEWS RELEASE

For immediate release:
Thursday, 11 December 2014

Way now clear for haze-preventing enzymes in Australian winemaking

Proctase + flash past. = available for 2015 vintage

APPROVED: Food Standards Australian New Zealand (FSANZ)
Use in AUS winemaking: wines sold domestically and exported to NZ
Current Winetech funded research
IWBT

Identification and Partial Characterization of Extracellular Aspartic Protease Genes from Metschnikowia pulcherrima IWBT Y1123 and Candida apicola IWBT Y1384

Vernita J. Reid, Louwrens W. Theron, Maret du Toit and Benoit Divol

Published Ahead of Print 20 July 2012.
Current Winetech funded research
IWBT

Applied and Environmental Microbiology

Identification and Partial Characterization of Extracellular Aspartic Protease Genes from Metschnikowia pulcherrima IWBT Y1123 and Candida apicola IWBT Y1384

Vernita J. Reid, Louwrens W. Theron, Maret du Toit and Benoit Divol

produced and secreted by the yeast
Current Winetech funded research

IWBT

Identification and Partial Characterization of Extracellular Aspartic Protease Genes from Metschnikowia pulcherrima IWBT Y1123 and Candida apicola IWBT Y1384

Vernita J. Reid, Louwrens W. Theron, Maret du Toit and Benoit Divol

Published Ahead of Print 20 July 2012.

acid protease
Current Winetech funded research

IWBT

Applied and Environmental Microbiology

Identification and Partial Characterization of Extracellular Aspartic Protease Genes from Metschnikowia pulcherrima WBT Y1123 and Candida apicola IWBT Y1384

Vernita J. Reid, Louwrens W. Theron, Maret du Toit and Benoit Divoil

Published Ahead of Print 20 July 2012.

non-Saccharomyces
Current Winetech funded research

IWBT

Identification and Partial Characterization of Extracellular Aspartic Protease Genes from Metschnikowia pulcherrima IWBT Y1123 and Candida apicola IWBT Y1384

Vernita J. Reid, Louwrens W. Theron, Maret du Toit and Benoit Divoir

- enzyme is secreted in presence of grape juice proteins

Still to determine:
- optimum pH and temp. for enzyme activity?
- activity of enzyme in wine?
- ability to hydrolyze wine proteins and significantly reduce haze formation?
description of the principal products used to make wine

conditions, instructions and limits for their use

337 pages...0 mentions

708 pages...1 mention
2015 Annual Work Programme

In accordance with the axes of the OIV 2015-2019 Strategic Plan

<table>
<thead>
<tr>
<th>SP Reference</th>
<th>Start Date</th>
<th>Actions</th>
<th>Expected in 2015</th>
<th>Lead (in bold) and other structures involved</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 cl</td>
<td>2014</td>
<td>Drafting of oenological practices; Use of proteases</td>
<td>Presentation of the opinion and draft resolution</td>
<td>CII, CIV</td>
</tr>
<tr>
<td>4 al</td>
<td>2014</td>
<td>Evaluation and opinion on the new additives or processing aids proposed as new practices</td>
<td>Opinion given and published on: - Polydimethylsiloxane - Agar-agar - Potassium carbonate - Protease - Polyamines</td>
<td>CIV</td>
</tr>
</tbody>
</table>

Further information...

Consideration...

Opinion...

Progression...
In the future?

- inclusion of protease in the International Oenological Codex of the OIV

- yeast producing extracellular proteases during fermentation

- other proteases under investigation:
 - Bcap8 (B. cinerea)
 - Antarctic fungi

- Carrageenan (red seaweeds)
Other issues to address with protease applications:
Alternative options to proteases for treatment of protein stability

Any alternative to bentonite

→ cheaper/more cost effective
→ better settling with less waste
→ more efficient
→ no flavour taint

Mannoproteins

- compete for non-protein compounds that contribute to instability
- positive impact on wine colour

Molecular imprinted polymers

- “designed” to selectively remove proteins
Proteases and protein instability – finally happening...
but not just yet!

Elda Lerm
Technical Consultant
Anchor Yeast

INDUSTRY WORKSHOP
6 May 2015