Storage of wine under different cork closures

by Berlia Roux

Supervisor:
Prof. Wessel du Toit

Co-Supervisor:
Dr. Marlize Bekker
Background

- Natural cork – from *Quercus suber*
- Decrease in usage (disadvantages like cork taint, variability & fragility)
- Today: Large variety of closures available
- Technical cork, synthetic closure, screw cap etc.

Brajkovich *et al.* 2005; Karbowiak *et al.*, 2010
Background

OTR (Oxygen Transmission Rate):
- Transfer of oxygen from the outside to the inside of the bottle through the closure.
- Too low OTR: reductive aromas (rubbery aroma)
- Too high OTR: oxidative aromas (nutty/sherry aroma)

Gap in knowledge?
1. New closures that differ in terms of OTR = technological closures
2. Little research on comparing these closures to each other
3. No closure studies on SA cultivated wines

Lopes et al., 2005 Furtado et al., 2021
Aim & Objectives

AIM:
To determine the effect of different cork closures, on the evolution of South African Chenin Blanc and Pinotage wines over a period of 30 months.

OBJECTIVES:
1. To investigate the changes in the chemical compositions of four wines under five different corks.
2. To compile and compare the sensory profiles of four wines under five different corks.
Experimental design

Closure A – Low OTR
Closure B,C,D - Moderate OTR
Closure E - Natural cork
Free SO$_2$

Chenin blanc E

Closure A – Low OTR
Closure B, C, D - Moderate OTR
Closure E - Natural cork
Reductive compounds

<table>
<thead>
<tr>
<th>Perception threshold</th>
<th>Compound</th>
<th>Closure A (Low OTR)</th>
<th>Closure B (Moderate)</th>
<th>Closure C (Moderate)</th>
<th>Closure D (Moderate)</th>
<th>Closure E (Control)</th>
<th>Descriptors</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1-1.6 μg/L</td>
<td>H₂S</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Boiled or rotten egg</td>
</tr>
<tr>
<td></td>
<td>(μg/L)</td>
<td>4.07<sup>a</sup></td>
<td>3.50<sup>b</sup></td>
<td>3.14<sup>c</sup></td>
<td>2.91<sup>bc</sup></td>
<td>2.74<sup>c</sup></td>
<td></td>
</tr>
<tr>
<td>1.8-3.1 μg/L</td>
<td>MeSH</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Burnt rubber, sewage, cabbage</td>
</tr>
<tr>
<td></td>
<td>(μg/L)</td>
<td>5.74<sup>a</sup></td>
<td>4.93<sup>b</sup></td>
<td>5.02<sup>b</sup></td>
<td>4.56<sup>b</sup></td>
<td>4.41<sup>b</sup></td>
<td></td>
</tr>
<tr>
<td>25 μg/L</td>
<td>DMS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Boiled cabbage, asparagus</td>
</tr>
<tr>
<td></td>
<td>(μg/L)</td>
<td>38.28<sup>a</sup></td>
<td>37.85<sup>ab</sup></td>
<td>37.45<sup>ab</sup></td>
<td>36.27<sup>b</sup></td>
<td>37.35<sup>ab</sup></td>
<td></td>
</tr>
</tbody>
</table>

Chenin blanc E
Chenin blanc E

After 30 months of bottle ageing

Closures A-E
After 30 months

<table>
<thead>
<tr>
<th>Significant descriptors</th>
<th>Closure A (Low OTR)</th>
<th>Closure B (Moderate)</th>
<th>Closure C (Moderate)</th>
<th>Closure D (Moderate)</th>
<th>Closure E Control</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peach</td>
<td>10,21b</td>
<td>9,51b</td>
<td>15,50ab</td>
<td>19,62a</td>
<td>14,10ab</td>
</tr>
<tr>
<td>Drain</td>
<td>14,57a</td>
<td>8,59b</td>
<td>6,17bc</td>
<td>1,08c</td>
<td>3,62bc</td>
</tr>
<tr>
<td>Burnt rubber</td>
<td>15,62a</td>
<td>8,51b</td>
<td>10,46ab</td>
<td>4,68b</td>
<td>7,81b</td>
</tr>
<tr>
<td>Cabbage</td>
<td>8,54a</td>
<td>6,22a</td>
<td>4,74a</td>
<td>0,48b</td>
<td>5,46a</td>
</tr>
<tr>
<td>Boiled egg</td>
<td>14,41a</td>
<td>4,70b</td>
<td>4,21b</td>
<td>0,00b</td>
<td>4,74b</td>
</tr>
</tbody>
</table>
Expected outcomes

1. Gain knowledge on the effect of different cork closures on the chemical and sensory profile of South African wines.

2. General development of Chenin Blanc and Pinotage varieties and their ageing abilities.

3. Further improvement in wine quality.

4. Future prospects: Determine oxygen permeation needed for a specific wine and ultimately choosing a closure according to a specific wine type.
Acknowledgements

• Prof. Wessel du Toit
• Dr. Marlize Bekker

DIAM

AWRI

Stellenbosch University

WINETECH

AgriSETA