

Content

01	Introduction
02	Selection of SafŒno™ SPK 05
03	SafŒno™ SPK 05's performance during PDM
04	SafŒno™ SPK 05 key characteristics
05	What happens during the starter preparation
06	"Prise de mousse" with a shortened 1-step yeast starter preparation

Technical comparison of two protocols

01 Introduction

Introduction

Pied de cuve

The "Prise de mousse (PDM)" or secondary fermentation is the step that allows a base wine to become sparkling or effervescent.

It requires the preparation of a yeast starter also known as "pied de cuve (PDC)".

Preparation time

The quality of the PDC is therefore essential to a successful PDM.

Traditionally the PDC is prepared in three days but this study showed that the preparation time can be reduced by half (36h) and to a single step.

Protocol

This work is based on the optimization of the existing protocol by adjusting the sugar and assimilable nitrogen contents.

O2 Selection of SafŒno™ SPK 05

Multiple partnerships

Fermentis yeast collection

Isolation and first screenings/microvinifications

Dry yeast production through the E2U™ process

Microvinifications with other partners

-IFV (Institut Français de la Vigne et du Vin) - France

- University of Reims Champagne-Ardenne - France

02.10.23

Selection through microvinifications

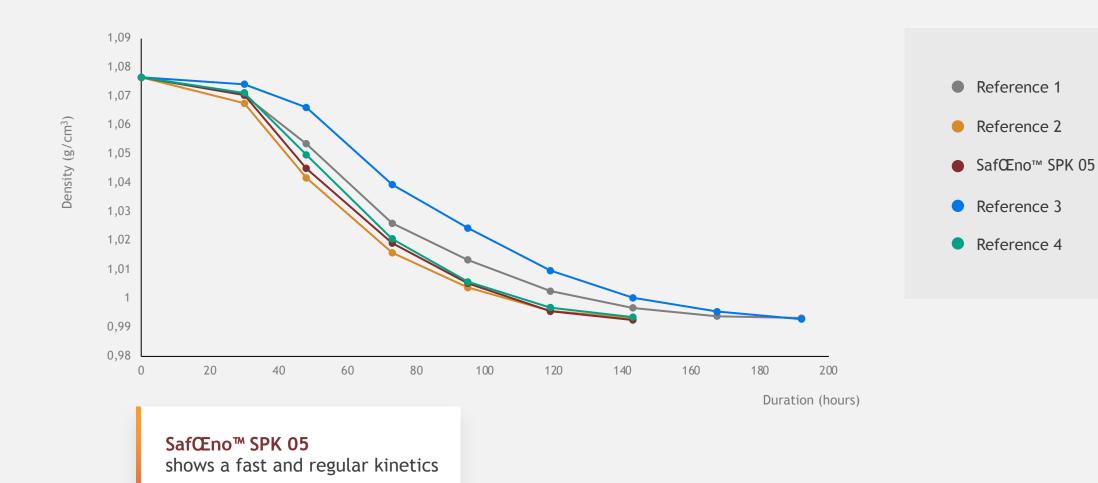
Evaluation of SafŒno™ SPK 05 on white must:Blend of Pinot Noir and Pinot Meunier - Champagne

Partners: IFV and University of Reims

Must analysis

Turbidity (NTU)	51.7
Total acidity (g/L H ₂ SO ₄)	6.4
Titrable acidity (g/L tartaric acid)	9,8
рН	3.06
Sugars (g/L)	178.8
Malic acid (g/L)	5.5
Density at 20°C (g/cm3)	1.0766
Potential alcohol (% vol)	10.63
Tartaric acid (g/L)	6.7
Assimilable nitrogen (mg/L)	259
Ammoniacal nitrogen (mg/L)	136
Alpha amino nitrogen (mg/L)	123

Yeast inoculation rate:


20 g/hL 1.7 lb/1000 gal

ALF temperature:

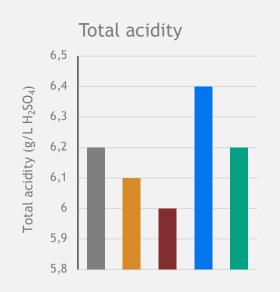
18°C (64.4°F)

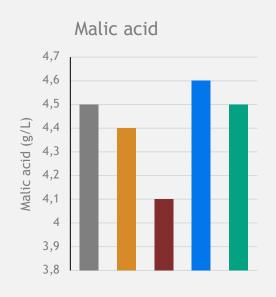
Fermentation Kinetics

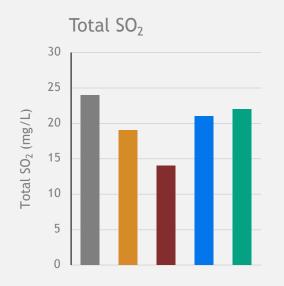
SafŒno™ SPK 05 "Prise De Mousse" with a shortened 1-step yeast starter preparation

Analytical parameters end ALF

	Reference 1	Reference 2	SafŒno™ SPK 05	Reference 3	Reference 4
Alcohol (%Vol)	10.84	10.91	10.91	10.88	10.89
Total acidity (g/L H ₂ SO ₄)	6.2	6.1	6	6.4	6.2
Titrable acidity (g/L tartaric acid)	9.5	9.3	9.2	9.8	9.5
рН	2.96	2.96	2.97	2.94	2.95
Volatile acidity (g/L H ₂ SO ₄)	0.17	0.16	0.15	0.17	0.18
Volatile acidity (g/L acetic acid)	0.20	0.19	0.18	0.20	0.21
Glucose + fructose (g/L)	0.3	0.2	0.1	<lq (0.1)<="" td=""><td>0.3</td></lq>	0.3
Total SO ₂ (mg/L)	24	19	14	21	22
Free SO ₂ (mg/L)	6	6	6	6	6
Malic acid (g/L)	4.5	4.4	4.1	4.6	4.5
Tartaric acid (g/L)	4	3.9	3.8	3.9	3.8
Calcium (mg/L)	94	92	92	91	94
Ammoniacal nitrogen (mg/L)	2	3	3	2	3
Alpha amino nitrogen (mg/L)	20	20	22	19	20


For most of the oenological parameters,


SafŒno™ SPK 05


behaves similarly to the reference strains but differences appear for malic acid consumption and the SO₂ production.

Analytical parameters end ALF

SafŒno™ SPK 05 "Prise De Mousse" with a shortened 1-step yeast starter preparation

- Reference 1
- Reference 2
- SafŒno™ SPK 05
- Reference 3
- Reference 4

Higher malic acid consumption (9%) compared to the reference strains leading to a lower total acidity level.

Lower production of SO₂ (35%) compared to the reference strains.

SafŒno™ SPK 05's performance during PDM

Selection through microvinifications

Evaluation of SafŒno™ SPK 05 on white must: Pinot Meunier - Champagne

Partners: IFV and University of Reims

Must analysis

Total acidity (g/L H ₂ SO ₄)	6.5
Titrable acidity (g/L tartaric acid)	9,9
рН	3.03
Sugars (g/L)	186
Malic acid (g/L)	5.4
Potassium (mg/L)	1612
Density at 20°C (g/cm³)	1.0794
Potential alcohol (% vol)	11.05
Tartaric acid (g/L)	7.8
Assimilable nitrogen (mg/L)	271
Ammoniacal nitrogen (mg/L)	143
Alpha amino nitrogen (mg/L)	127

Yeast inoculation rate:

20 g/hL 1.7 lb/1000 gal

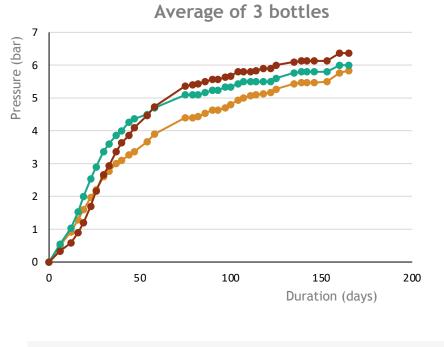
ALF temperature:

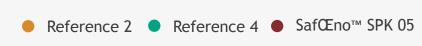
18°C (64.4°F)

Analytical parameters end ALF

	Reference 2	SafŒno™ SPK 05	Reference 4
Alcohol (%Vol)	11.02	11.1	11.04
Total acidity (g/L H ₂ SO ₄)	5.9	5.7	6
Titrable acidity (g/L tartaric acid)	9.0	8.7	9.1
рН	2.99	3	2.95
Volatile acidity (g/L H ₂ SO ₄)	0.17	0.14	0.18
Volatile acidity (g/L acetic acid)	0.20	0.17	0.21
Glucose + fructose (g/L)	1.2	0.7	0.8
Total SO ₂ (mg/L)	98	85	92
Free SO ₂ (mg/L)	43	45	46
Malic acid (g/L)	4.3	4.1	4.5
Tartaric acid (g/L)	3.8	3.8	3.8
Ammoniacal nitrogen (mg/L)	3	4	3
Alpha amino nitrogen (mg/L)	29	38	20

Higher malic acid consumption (7%) compared to the reference strains leading to a lower total acidity level.


Lower production of SO_2 (11%) compared to the reference strains.


No significant differences in the duration of ALF.

Secondary fermentation or « Prise de mousse »

Pressure monitoring with aphrometers

Analytical parameters end PDM

	Reference 2	SafŒno™ SPK 05	Reference 4
Alcohol (%Vol)	12.18	12.24	12.19
Total acidity (g/L H ₂ SO ₄)	4.1	4.2	4.4
Titrable acidity (g/L tartaric acid)	6.2	6.4	6.7
рН	3.09	3.19	3.18
Volatile acidity (g/L H ₂ SO ₄)	0.22	0.19	0.25
Volatile acidity (g/L acetic acid)	0.26	0.23	0.30
Glucose + fructose (g/L)	3.6	1.7	1.1
Total SO ₂ (mg/L)	26	33	47
Malic acid (g/L)	<0.2	<0.2	<0.2
Tartaric acid (g/L)	2.9	3.7	3.5

SafŒno™ SPK 05 shows excellent fermentation kinetics during the PDM, reaching 6 bars of pressure faster than reference yeast 4. In these conditions, reference yeast 2 does not consume all the sugars.

Descriptive tasting results after 13 months post PDM

SafŒno™ SPK 05

Fine bubbles, very nice light foam, straw yellow - Fresh and elegant nose - yellow with green reflections - very nice foam - the mouth seems slightly sweet - effervescence in the mouth a little discreet. - good length, persistent fruitiness - sweetness - Balanced finish, no fermentative notes.

Reference 2

Finer but important foam Effervescence in the mouth very
present, drying, a little bitter Nose rather discreet but clear.
Less fruity perception in the
taste. Slightly evolved yellow
color – Balanced wine,
satisfactory overall but short
aromatic length.

Reference 4

Foam: fine bubbles, discreet collar despite the effervescence – Discreet nose: more freshness, less aromas – Mouth: good balance, good length, more sweetness, more aromatic freshness. Very nice balance and length in the mouth, more freshness. – Good global balance.

Taking into consideration the lower fermentation performance during the PDM and the tasting notes, Reference 2 is excluded from the study.

Selection through microvinifications

Evaluation of SafŒno™ SPK 05 on white must: Pinot Meunier - Champagne

Partners: IFV and University of Reims

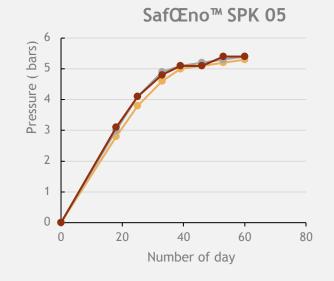
Wine analysis after ALF

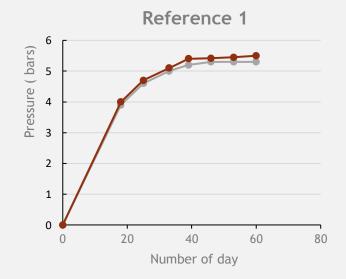
Alcohol (%Vol)	10.79
Total acidity (g/L H ₂ SO ₄)	5.7
Titrable acidity (g/L tartaric acid)	8.7
рН	3.03
Volatile acidity (g/L H ₂ SO ₄)	0.15
Volatile acidity (g/L acetic acid)	0.18
Glucose + fructose (g/L)	0.3
Total SO ₂ (mg/L)	34
Free SO ₂ (mg/L)	6
Malic acid (g/L)	4.3
Tartaric acid (g/L)	3.8
Ammoniacal nitrogen (mg/L)	3
Alpha amino nitrogen (mg/L)	31

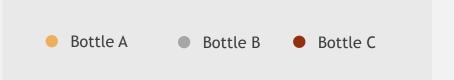
Yeast inoculation rate:

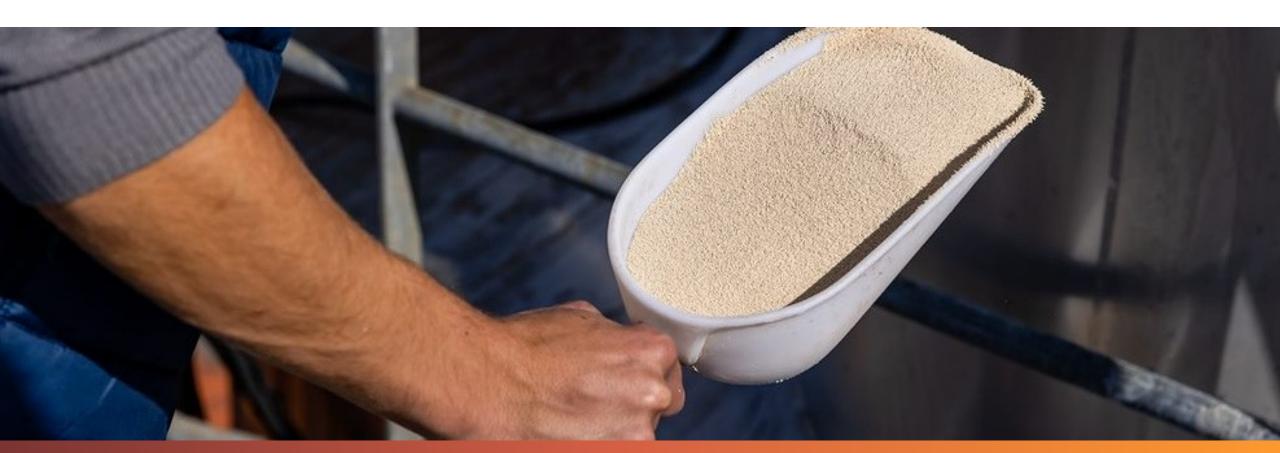
20 g/hL 1.7 lb/1000 gal

ALF temperature:


18°C (64.4°F)


Secondary fermentation or « Prise de mousse »


Pressure monitoring with aphrometers


SafŒno™ SPK 05 "Prise De Mousse" with a shortened 1-step yeast starter preparation

Excellent fermentation performance for SafŒno™ SPK 05 during the PDM.

O4 SafŒno™ SPK 05 key characteristics

Key characteristics produces clean and mineral sparkling wines

Thanks to its great fermentation abilities and aromatic features, SafŒno™ SPK 05 produces white wines with clean and fresh profiles.

For the secondary fermentation (Prise de mousse), SafŒno™ SPK 05 shows fast and regular kinetics and allows to quickly produce elegant, fresh and clean sparkling wines.

Technical characteristics

Fermentation abilities

characteristics

Metabolic

High implantation strengh

Recommended maximum alcohol: up to 14% v/v

LOW volatile acidity production

Medium lag phase

Recommended temperature range: 12-20 °C (50-86 °F)

Medium malic acid consumption (25%)

Fast and regular

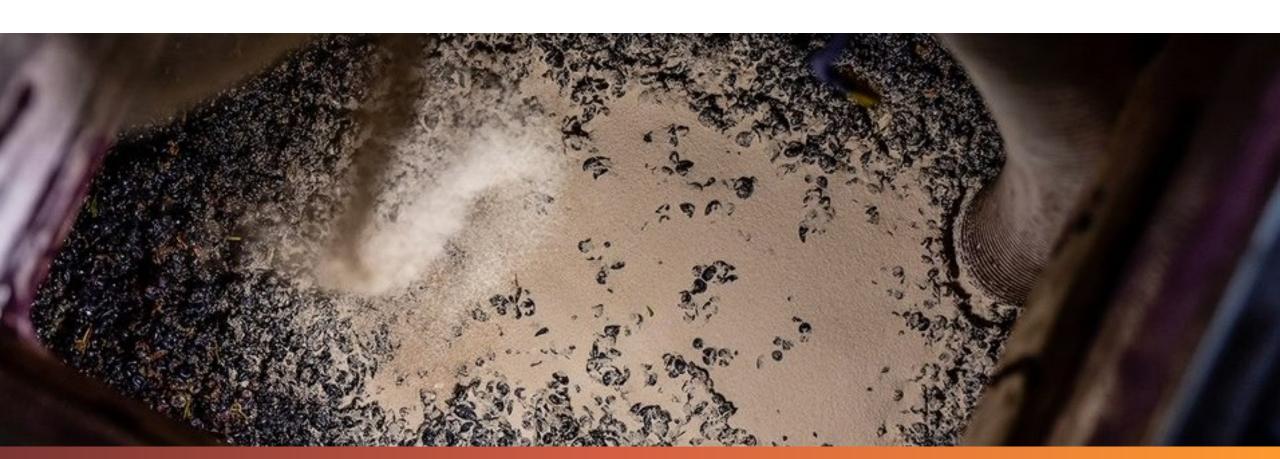
fermentation kinetics (first fermentation and "Prise de Mousse"

Low to medium YAN requirements YAN/S = 0.7-0.8

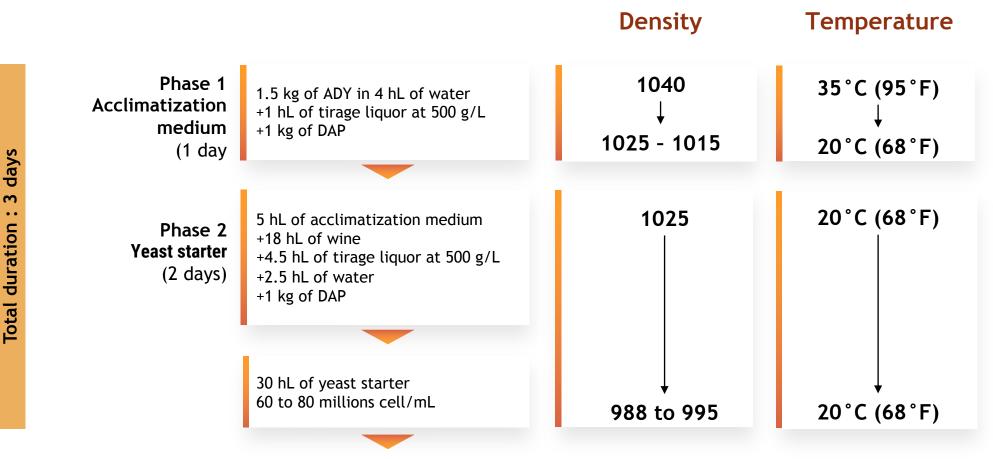
High SO₂ resistance (between 50 and 75 mg/L)

High resistance to

low pH (2.8)



Very low production


of SO₂ and H₂S.

What happens during the starter preparation?

Traditional Champagne protocol for yeast starter preparation

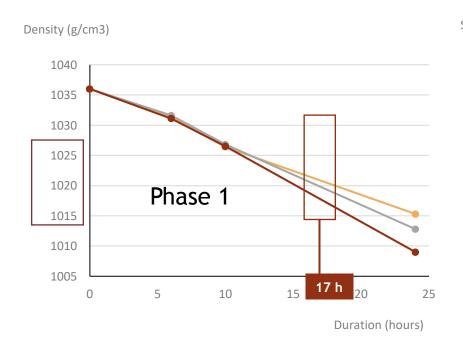
Inoculation at 3% (1000 hL of wine)

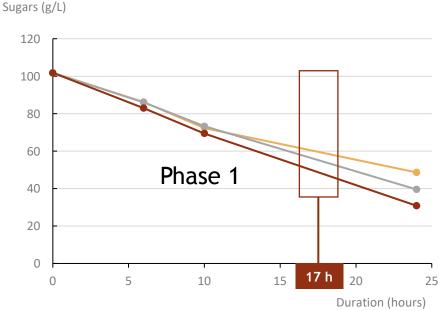

The acclimatization phase during the yeast starter preparation

Technical objective: to study the consumption of nitrogen and sugars by SafŒno™ SPK 05 during phase 1.

Phase 1
Acclimatization
medium
(1 day)

1.5 kg of ADY in 4 hL of water
+1 hL of tirage liquor at 500 g/L
+1 kg of DAP


Assimilable nitrogen provided during the phase 1: 1 kg of DAP in 5 hL corresponding to 400 mg/L of nitrogen



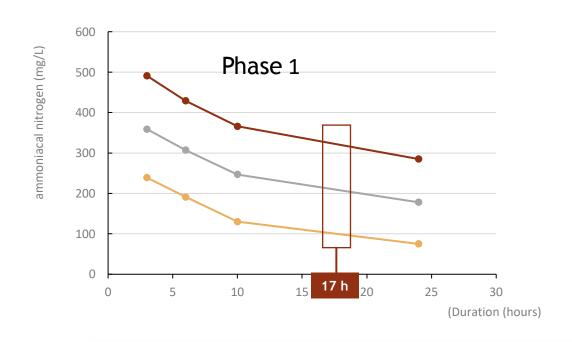
The acclimatization phase during the yeast starter preparation

Effect of the dose of ammoniacal nitrogen on ALF achievement

SafŒno™ SPK 05 "Prise De Mousse" with a shortened 1-step yeast starter preparation

- SafŒno™ SPK 05 N280
- SafŒno™ SPK 05 N400
- SafŒno™ SPK 05 N520

Consumption and sugar content after 17h (Phase 1 end) for N400


- Sugars consumed: 43 g/L
- Remaining sugars: 57 g/L

SafŒno™ SPK 05 consumes approximatively 50% of the sugars initially present.

The acclimatization phase during the yeast starter preparation

Consumption of assimilable nitrogen (provided by DAP) during the phase 1

- SafŒno™ SPK 05 N280
 SafŒno™ SPK 05 N400
 SafŒno™ SPK 05 N520
- Consumption and content of N assimilable after 17 h (Phase 1 end) for N400
- N assimilable consumed: 193 mg/L
- Remaining N assimilable: 207 mg/L
- = SafŒno™ SPK 05 consumes approximatively 50% of the N assimilable initially present.

No nitrogen deficiency for any of the 3 dosages of DAP.

Low needs for nitrogen of SafŒno™ SPK 05 compared to the usual quantity recommended in traditional protocol.

"Prise De Mousse" with a shortened1-step yeast starter preparation

- 1.5 kg of ADY in 4 hL of water
- +1 hL of tirage liquor at 500 g/L
- +1 kg of DAP

Phase 2 Yeast starter (2 days) 5 hL of acclimatization medium

- +18 hL of wine
- +4.5 hL of tirage liquor at 500 g/L
- +2.5 hL of water
- +1 kg of DAP

Taking into consideration:

- SafŒno™ SPK 05's great fermentation abilities during the first alcoholic fermentation and the PDM.
- SafŒno™ SPK 05's low needs of nitrogen compared to the initial amount recommended by the classical Champagne protocol.
- The interest of reducing tank turnover time.
- The importance of limiting energy costs.

= Idea to shorten the preparation time of the starter protocol

Protocol with two phases (3 days)

Phase 1 Acclimatization medium (1 day)

1.5 kg of ADY in 4 hL of water

- +1 hL of tirage liquor at 500 g/L
- +1 kg of DAP

Phase 2 Yeast starter (2 days) 5 hL of acclimatization medium

- +18 hL of wine
- +4.5 hL of tirage liquor at 500 g/L
- +2.5 hL of water
- +1 kg of DAP

30 hL of yeast starter 60 to 80 millions cell/mL

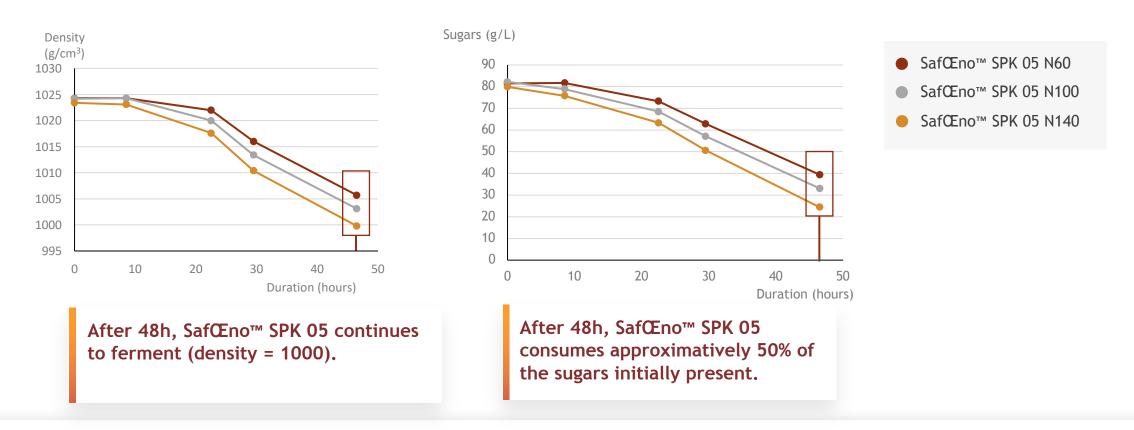
Inoculation at 3% (1000 hL of wine)

Protocol 1-step (36h)

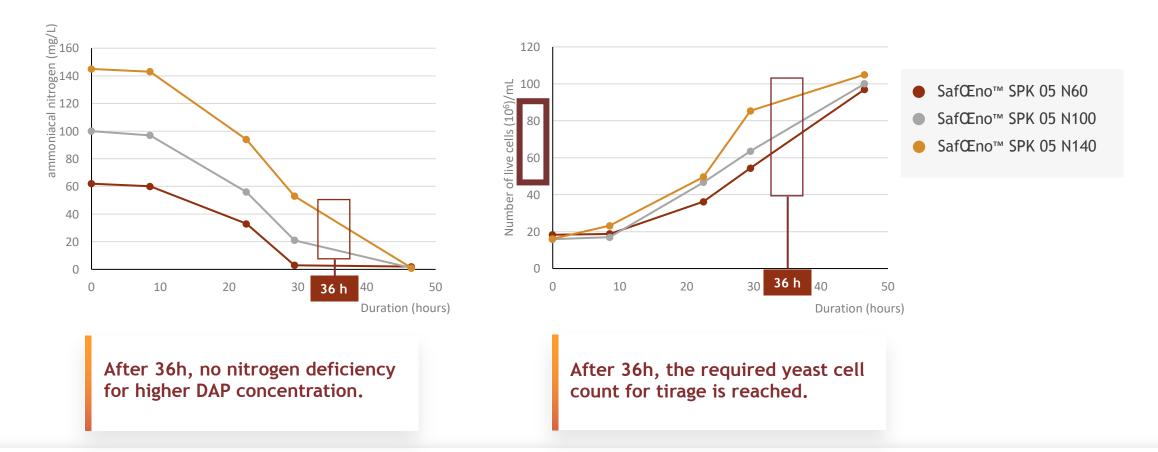
NO PHASE 1

25 hL of wine

- +1,5 kg of SafŒno™ SPK 05
- +5 hL of tirage liquor at 500 g/L (83 g/L of sugar)
- +1,5 kg of DAP (100 mg/L N ass)

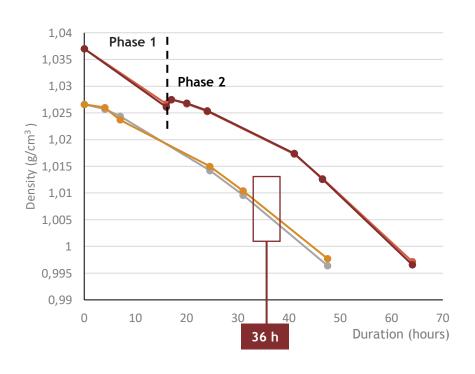

30 hL of yeast starter 60 to 80 millions cell/mL

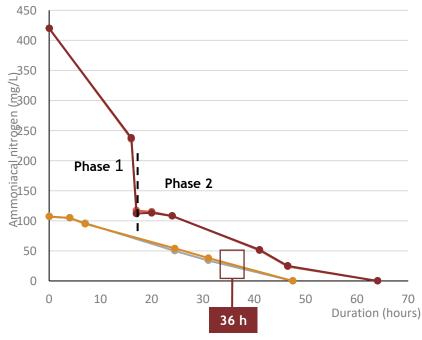
Inoculation at 3% (1000 hL of wine)


Technical objective: to study the consumption of nitrogen and sugars by SafŒno™ SPK 05 during phase 2.

Effect of the dose of ammoniacal nitrogen on ALF achievement

Technical objective: to study the consumption of nitrogen and sugars by SafŒno™ SPK 05 during phase 2.





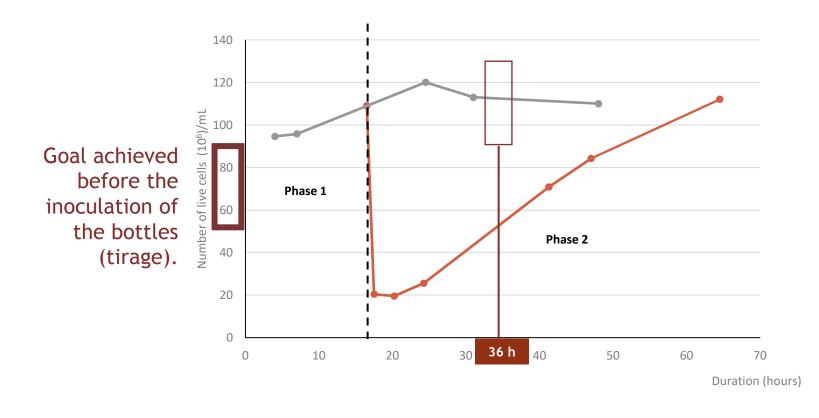
Technical comparison of two protocols

Comparison of the two protocols for SafŒno™ SPK 05

A & B: 2 phases protocol

- SafŒno™ SPK 05 A
- SafŒno™ SPK 05 B

C & D: 1-step protocol


- SafŒno™ SPK 05 C
- SafŒno™ SPK 05 D

Gain of 17 hours with the one-step protocol.

After 36h, no nitrogen deficiency for SafŒno™ SPK 05 with the protocol 1-step.

Comparison of the two protocols for SafŒno™ SPK 05

A: 2 phases protocol

SafŒno™ SPK 05 A

C: 1-step protocol

SafŒno™ SPK 05 C

After 36h, SafŒno™ SPK 05 have a cell count superior to 110.106 cells/mL

To conclude...

Traditionally the PDC is prepared in three days, but this study showed that the preparation time can be reduced by half (36h) and to a single step.

This work is based on the optimization of the existing protocol by adjusting the contents of sugars and assimilable nitrogen.

It allows us to propose a new technical solution for the yeast starter preparation able to perform a PDM in a time equivalent to the protocol traditionally used.

The tasting results showed no sensorial differences between the sparkling wines made from the two "pied de cuve (PDC)" preparation methods.

Thank you for your attention!

