

Powdery mildew management in grapes

Francois Halleen and Minette Havenga

Grapevine powdery mildew (witroes)

Eryisphe necator

Obligate biotroph (verpligte patogeen)

Require green tissue to survive

Leaves

Canes

Berries

Huge economic losses

Lower quality and quantity of grapes

Cost associated with fungicides

Leaf symptoms

Young leaves are distorted

Initially, yellow to green blotches

Ash-grey to white powder

Asexual conidial spores

Source: Jones et al. (2014)

Cane symptoms

Oily grey blotches on green shoots

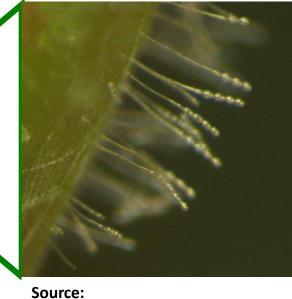
Red-brown to black patches

Mature irregularly

Shoots are stunted and dieback

Berry symptoms

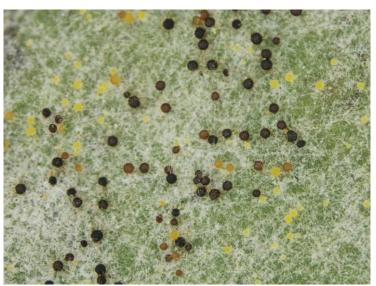
Young berries


Scarred

Cracked

Asexual conidia

https://www.agric.wa.gov.au/table-grapes/powdery-mildew-grapevines-western-Australia



Two phases

Asexual

Sexual

Source: Jones et al. (2014)

Asexual phase

Overwinter in buds
Activated during bud break
Infection early in the season
Grow with shoots – result in flag shoot
Produce a mass of spores

Spores appear under the leaf

Sexual structure

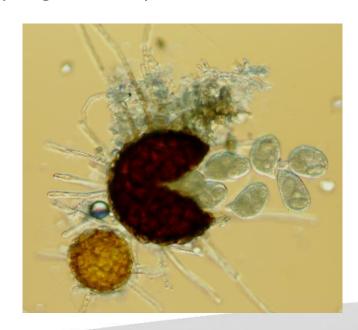
Two individuals of opposite mating types

Autumn – wash to trunk

Form overwintering chasmothecia (previously known as cleistothecia)

Immature:

Susceptible to fungicides



Mature:

Dormant overwintering structure for survival

Spring – burst open after 2.5 mm rain

Life cycle Fungus overwinters in dormant buds Infected buds give rise to young shoots Ascus completely covered containing by fungus ascospores Cleistothecium Ascospores are inrected released in Fungus grape cluster spring Developing buds sporulates on become infected surface of green shoots and leaves Conidia Cleistothecia are produced on leaves, shoots, and berries in late summer Conidia and ascospores infect green tissue Fungus on leaves, shoots, and berries produces conidia that are spread by wind

Life cycle - unknowns

When chasmothecia matures become resistant

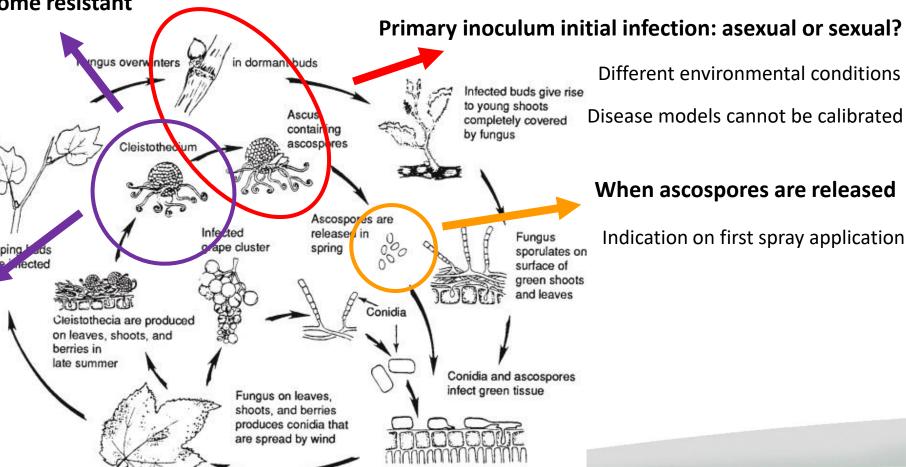
Up to what period will fungicides be

effective?

Will a post-harvest application reduce

inoculum?

Where chasmothecia overwinters


(bark or leaf litter)

Australia – leaf litter is an important

inoculum source

<u>Europe</u> – colder region, leaf litter

decomposed by bud break

Different environmental conditions

Disease models cannot be calibrated

When ascospores are released

Indication on first spray application

1999 to now

1996-1999

A few immature chasmothecia

One or two per 100 leaves in three vineyards

In Austria similar observation from 1990 – 2021

(Steinkellner, 1998); (Redl et al., 2021)

Climate change drives survival and viability of ascospores

Now

Large numbers of chasmothecia

- Several thousand per leaf on almost all powdery mildew infected leaves
- Stellenbosch, Paarl, Franschhoek, Somerset West,
 Grabouw, Hermanus, Constantia and Durbanville

Practical impact on management

Linked to reduced fungicide sensitivity

Pathogen can spread further throughout the vineyard compared to flag shoots

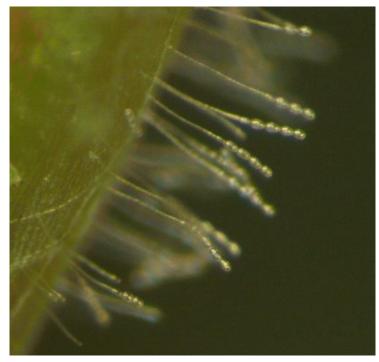
Reference: Halleen et al. (2016) SASEV conference poster

Sexual reproduction is concerning

- Sexual reproduction leads to genetically unique individuals
- Shift in fungicide sensitivity against several actives are suspected
- The level of reduced sensitivity is unknown

Examples of fungicide sensitivity shifts:

South Africa (Halleen *et al.*, 2001) – DMI Australia (Scott, 2020) – DMI USA (Miles et al., 2012; Baudoin et al., 2008) - Qol Chile (Frenkel et al., 2015) – Qol Europe (Frenkel et al., 2011) - Qol


How could these studies assess this?

Challenges working with this fungus


Cannot use standard laboratory protocols to grow, maintain or store the fungus

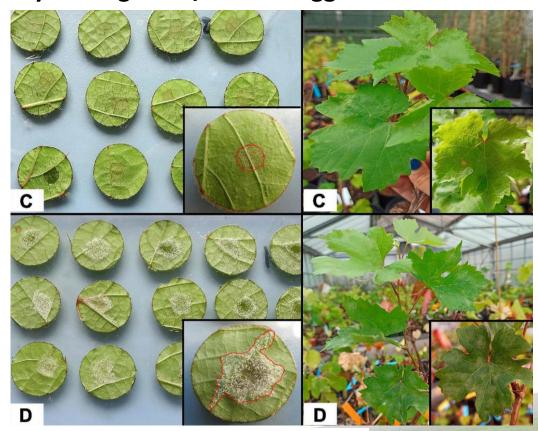
Single conidia chain transfer

Source: https://www.agric.wa.gov.au/table-grapes/powdery-mildew-grapevines-western-Australia

Detached leaf on water agar

Source: Gao et al. (2016)

Harvest and store fungal material



Reference: Evans et al. (1996) Mycological Research 100: 675-680

Reduced fungicide sensitivity

Efficacy of fungicides/ level of aggressiveness of isolates

Source: Ruiz-Garcia et al. (2021)

Level of reduced fungicide sensitivity

Molecular techniques (qPCR):

Identify point mutation

Qol

DMI

SDHI

Management - fungicides

Repeated and extensive fungicide application

Bud break to pea size stage - susceptible

Registered active in South Africa

FRAC	Group name	Active
1	MBC	benomyl
3	DMI	difenoconazole, flusilazole, flutriafol, hexaconazole, myclobutanil, penconazole, tebuconazole, triadimenol
5	Amines	spiroxamine
7	SDHI	boscalid, fluopyram, pydiflumetofen
11	QoI	azoxystrobin, pyraclostrobin, trifloxystrobin, kesoxum-methyl
13	quinolines	quinoxyfen
29	uncoupler of oxidative phosphorylation	meptyldinocap
M1	inorganic	copper ammonium acetate, cuprous oxide
M2	inorganic	sulphur

Risk to become less sensitive to fungicides

Pressure from EU to reduce fungicide use

Management (biological / alternative / non-classified)

Registered products in South Africa

Ampelomyces quisqualis

Bacillus amyloliquefaciencs

Potassium bicarbonate [syn. Potassium hydrogen carbonate]

Borax [syn. Sodium tetraborate] + orange oil

Melaleuca alternifolia oil

Non-ionic surfactant + orange oil

Organic plant acids

Polysulphide sulphur [syn. Calcium polysulphide; lime sulphur]

Salicylic acid

Conclusion

An urgent and critical re-assessment of primary inoculum in Western Cape vineyards is required

- do chasmothecia overwinter successfully? And where?
- how much does it contribute to initial infections
- when are ascospores released (is it correlated with budbreak and early growth)?
- ascospore release (environmental requirements) differ from country to country (Riedl et al., 2021), we need to study our own situation

The efficacy of post harvest applications to reduce chasmothecia formation and inoculum pressure must be determined

Conclusion

Fungicide sensitivity of the most important / widely used fungicide groups must be determined

Climate change!fungal pathogens also adaptbe aware

- re-think spray programs (i.e. correlate with ascospore release)
- prediction models (ask whether model is "calibrated" according to the sexual or asexual phase, and why???)

More than ever critically IMPORTANT to follow the manufacturers recommendations

