Technology to predict browning in table grapes

Dr Andries Daniels

Thursday, 12 August 2021 SASEV, SATI & RaisinsSA Table and Raisin Grape Virtual Information Day

Introduction

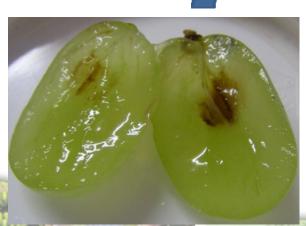
Levels of table grape quality

Before harvest

Post harvest

Quality Defects

- Grey mould rot
- **❖** Berry crack
- ❖ SO₂ damage
- Stem browning
- Berry browning

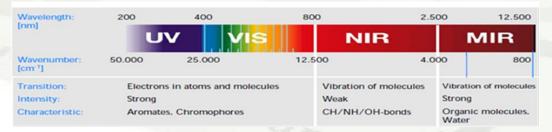


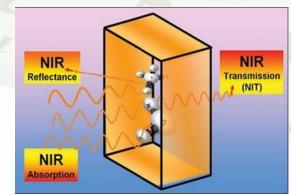
Browning in table grapes

- Browning complex biological process
- Healthy/unaffected to brown
- Occurs over gradient

Problem with old method of measuring qualitative aspects

- Traditionally only preventative measures are put into place to ensure that table grape quality remains the same from harvest up until it reaches the market or the consumer
- Also, the fact that table grape quality is a multi-faceted aspect that does not just stop at harvest but is followed through postharvest, complicates things further...





New Method - NIR spectroscopy

- Cutting edge technology
 - Used with great success
 - On different products
 - ❖ To determine wide range of attributes

- Sensors, optical fibers, handheld devices, online instruments
- ❖ Visible + NIR

Overall aim & Objective

- To determine as early as possible
- During which storage week the browning develops
- See how well the affected and non-affected bunches could be classified
- Partial least squares discriminant analysis (PLS-DA)
- Qualitative analysis
- Grading & classification
- ❖In the production line

Materials and Methods

- Regal Seedless was harvested from two different vineyards
- The grapes were prepared in the vineyard according to the standard protocol for export table grapes
- Grapes bunches harvested, placed in individual plastic carry bag and packed in 4.5 kg closed-top corrugated fibre board cartons
- Spectral data of whole table grape bunches obtained contactless in diffuse reflectance mode with Bruker's MATRIX-F Fourier Transform (FT) NIR spectrometer

Materials and Methods continued...

- All 7 boxes from each vineyard were scanned immediately after harvest
- Of the 6 boxes that went into cold storage, one box was scanned again each week after cold storage
- That is after one week (W1), two weeks (W2)....(W6)
- Evaluation of each box was done immediately after scanning
- The evaluation data for W0, 1&2 were pooled together and also those for W3&4 and W5&6
- Since the level of defect/browning intensity were too low
- After each bunch had been scanned the loose berries in the carry bag were noted down as loose berries
- These berries were not evaluated for browning or any of the other defects

Materials and Methods continued...

- All berries still attached to the bunch were removed with scissor
- Evaluated individually for specific defects (browning phenotypes)
- The incidence of every defect was noted down
- Contingency table was set up
- ❖ When a specific defect was present on the bunch, the defect was assigned a value of 1,
- ❖ And when it was absent it was assigned a value of 0

Partial least squares discriminant analysis (PLS-DA)

- PLS-DA derivative of the standard PLS regression algorithm
- Uses class variables instead of numeric variables
- In PLS-DA, dummy variable Y is used as a response variable
- Set to 1 if the sample is one of either class and 0 if not
- In our case the defects were then scored as
 - 0 = no defect and 1 = defect present
- A cut-off value was set at 0.5, above which the sample is predicted as 1 and below which it is predicted as 0
- In addition,
 - specificity to correctly identify bunches without the defect
 - sensitivity to correctly identify bunches with the defect
 - classification error rate (CER) to evaluate model's performance

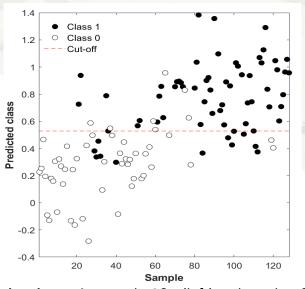
Results:

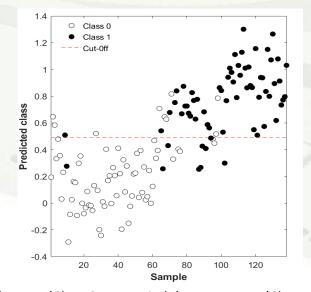
PLS-DA Chocolate and Friction Browning

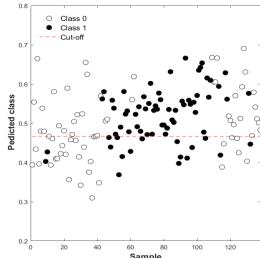
Table 1. The Classification error rate, Specificity and Sensitivity of the PLS-DA models constructed for Chocolate browning (CB) and Friction browning (FB) of Regal Seedless grapes.

Defect	Sample set		Class 0			Class 1	
		CER c	Spec d	Sen ^e	CER	Spec	Sen
CB:W3&4 ^a	Calibration	0.15	0.865	0.815	0.15	0.815	0.865
CB: W3&4	CV	0.25	0.808	0.692	0.25	0.692	0.808
CB:W5&6 ^b	Calibration	0.13	0.875	0.864	0.13	0.864	0.875
CB: W5&6	CV	0.22	0.722	0.818	0.22	0.818	0.722
FB: W3&4	Calibration	0.41	0.412	0.757	0.41	0.757	0.412
FB: W3&4	CV	0.46	0.353	0.714	0.26	0.714	0.353

^a Weeks 3 and 4; ^b Weeks 5 and 6; ^c Class error rate defined as the mean of the false positive and false positive rates;

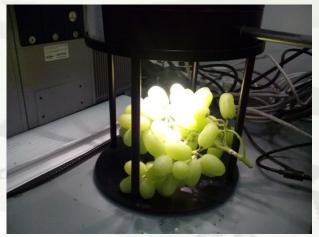


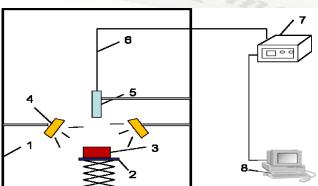



^d Specificity; ^e Sensitivity.

PLS-DA Chocolate and Friction Browning

PLS-DA model for chocolate browning Weeks 3&4 (left) and Weeks 5&6 (right). Absence (Class 0, open circle) or presence (Class 1, closed circle)




PLS-DA model for friction browning Weeks 3&4). Absence (Class 0, open circle) or presence (Class 1, closed circle)

Conclusion

- Lots of variation in whole bunches
- Implication for setting up instrument in packing shed
- Sample presentation
- Instrument configuration
- Moving speed along conveyer belt
- Increase correct and accurate classification
- Enhance detection of possibility of the defect developing early enough
- Help with marketing decisions
- Technology couple with Machine Vision
- Real-time detection

Limit/Prevent/Stop
Postharvest losses in table
grapes throughout the quality
chain

Acknowledgements

Thank you ©